RS232/USB Interface for PPULSE-PC User Manual

Version 1.2-2018-03-12

1.0 Introduction

The PPULSE-PC is an RS232 interface module for most pulse type coin acceptor or bill acceptor products. The PPULSE-PC has a built-in true RS232 port on its uplink communication port to interface with the serial port on a PC and a downlink port with inhibit line or inhibit relay to interface with validators. With the PPULSE-PC, the end operator can treat all different kinds of validators as a standard RS232 device and can concentrate on the real operation of the validator rather than the tedious interface work of the hardware discrepancy. On the PC platform, the software developer can easily program the validators via the PPULSE-PC with common computer languages such as Visual Basic / C++.

(Picture is the PPULSE-PC RS232 Version)

2.0 Compatibility

PPULSE-PC is a successor of the WF-700 model and the updated version of WF-700. PPULSE-PC is 100% functionality compatible to WF-700. With the DIP Switch, a more versatile configuration can be setup to interface with the most commonly used parallel pulse type coin validators found in the market.

3.0 Features

- PPULSE-PC has bill acceptor and coin acceptor credit pulse input. now the coin acceptor hardware interface is customized for parallel type pulse coin acceptor.We also provide other customized service for other brand bill acceptor or coin acceptor.
- PPULSE-PC has two alarm input port, that alarm is switch type input, that would be easily used for device status detection. when Alarm1 or Alarm2 is shorted to GND, then alarm is triggered and the status changed data would be reported to the PC
- > PPULSE-PC has one relay output, that can be controlled with the COMMAND sent from PC
- > WAFER Provide optional SDK and technical support.

4.0 Communications

This interface is a three wire interface using a Transmit line (TXD), a receive line (RXD) and a Common line. The Host machine is thought of as being the Master device. The PPULSE-PC is the slave device that responds only to the polls (or requests) from the Master. In this polled system, the Master requests information from the PPULSE-PC at a periodic rate. This rate can be as fast as every 100 milliseconds or as slow as the elapse time defined by the Lockout Timer. Faster rates are more desirable since overall system performance (in terms of bills/coins per minute accepted) will be higher at high poll rate system.

PPULSE-PC has a "Lockout" Timer feature that it will disable the acceptor if the specified poll rate is not met. In another words, if the host system is too busy to keep up with the desired minimum poll rate, PPULSE-PC will put the acceptors into the Disabled mode. The acceptor will be enabled again once the communication resumes.

5.0 GENERAL DATA

Baud Rate:	- 9600
Duplex:	- Half Duplex
Character Format:	1 start and 1 stop bit, 8 data bits (Bits $0 = \text{sent first}$ (LSB)

Lockout Timer

If the PPULSE-PC does not receive a poll after an elapse time specified by the hardware jumper, it will:

- \diamond Suspend (Disable) the acceptor.
- ♦ Return any note being held in escrow (if applicable)

This Lockout Timer has a selection of 1 second ,10 second, 20 seconds or no lockout specified by

the setting of a DIP Switch.

For normal ,we select the 1s:

Credit stack, Parallel Mode

PPULSE-PC has a 6-level of credit stack in parallel mode. The stack is a FIFO type and holds up to 6 distinct credits and status information from the acceptor. On a slow polling system or whenever a

communication loss occurs, credits issued by the acceptor are temporary stored in the PPULSE-PC ram and to be released to the Master on future polls. When the 2nd level of stack is entered, PPULSE-PC will disable the acceptor to avoid taking in any new tokens. Any credits already on the way sending from the acceptor will be piled up in the PPULSE-PC stack.

Pulse chain, Pulse Mode

PPULSE-PC has a pulse counter that can hold up to 261 pulses. Each pulse received from the acceptor is treated as an individual event. Thus, in another word, if a \$20 dollar bill is accepted by a bill acceptor, 20 individual credits will be reported by the PPULSE-PC in 20 consecutive events in its uplink communication. If the number of pulses is larger than 261, and the system is not polling fast enough to clear the stack, a stack overflow situation will occur. In such a case, the PPULSE-PC will output the inhibit to Lock the coin selector.

Inhibit

PPULSE-PC will switch off the DC12V power supply or Enable the inhibit line to stop the device.

6.0 MESSAGE FORMAT, UPLINK COMMUNICATION

Format: STX, Length, MSG Type and Ack #, Data Fields....., ETX, Checksum

Descriptions are as follows:

STX - 02h One byte indicating Start of message

LENGTH - One byte representation of the number of bytes in each message (binary), including the STX, ETX ,the Checksum and LENGTH

MSG TYPE and ACK # - One byte of Data

MSG Type - (Bits 4-6)

001 - for Master to PPULSE-PC Message

010 - for PPULSE-PC to Master Message

011 to 111 - reserved for future.

ACK # - (Bits 0-3)

00h

(So data from PC to PPULSE-PC will be 10h and from PPULSE-PC to PC will be 20h)

In the messages sent by Master, the Ack # is used to identify the message. The Ack # alternates between 00 and 01h. If the PPULSE-PC receisves two consecutive messages with the same number, the second message is treated as a retransmission of the first message.

In the messages sent by PPULSE-PC, the Ack # number is set the same as in the Master message to indicate the successfulness of the current message. If the PPULSE-PC receives a message incorrectly (wrong checksum), the received message will be discarded and no message will be sent back.

DATA	- The data portion of the message consists of the multiple data fields. We will
	discuss it in the section of DATA FIELDS.

- 03h One byte indicating End of message.

CHECKSUM

ETX

One byte indicating End of message.
 One byte checksum. The checksum is calculated on all bytes except the STX, ETX, and checksum byte itself. The calculation is done by XORing the bytes.
 (Data from PC to PPULSE-PC ,checksum no need to be exactly calculated)

 For example data:
 02 0B 20 01 10 01 00 00 01 03 3A

 Checksum
 3A= 0B + 20 + 01 + 10 + 01 + 00 + 00 + 01

6.1 PC-to- PPULSE-PC communications

Example: 02 08 10 03 20 00 03 77

(Checksum data from PC to PPULSE-PC , no need to be exactly calculated, so can always use 77h)

Data Fields (02 08 10 will be fixed data bytes):

BYTE 0

For PPULSE-PC

Set to 00H – Disable Bill acceptor and coin acceptor

Set to 01H – Enable Parallel Pulse Bill acceptor but Disable bill acceptor

Set to 02H – Enable bill acceptor, but Disable Parallel pulse coin acceptor

Set to 03H – Enable both payment input (other data will also do this enable status)

Other data segment will be used when upgrading the device, Please consider follow-compatible design

<u>BYTE 1</u>

For PPULSE-PC

Set to 10H - Relay Output is switched ON

Set to 20H - Relay Output is switched OFF

Other data segment will be used when upgrading the device, Please consider follow-compatible design

<u>BYTE 2</u>

For PPULSE-PC models

Set to 00h

02 08 10 00 20 00 03 77	Inhibit both acceptors
02 08 10 01 20 00 03 77	Enable Parallel pulse acceptor
02 08 10 02 20 00 03 77	Enable pulse acceptor
02 08 10 03 10 00 03 77	Enable both acceptors and Switch on the Relay output

6.2 PPULSE-PC-to-PC communications

Example: 02 0B 20 01 10 00 00 01 01 03 3A Data Fields (02 0B 20 will be fixed data bytes):

<u>BYTE 0</u>

For PPULSE-PC Set to 01h – Nothing to report Set to 10h – Credit was accepted

<u>BYTE 1</u> For all PPULSE-PC models Set to 10h

<u>BYTE 2</u>

For all PPULSE-PC models: Bit 0 - Power up (= 1 if PPULSE-PC experienced a reset since the last poll)

Bit 1 - Invalid command (= 1 if invalid command received)

Bit 2 - Failure (= 1 if acceptor has alarm input2 Report, for example, failed or cashbox full)

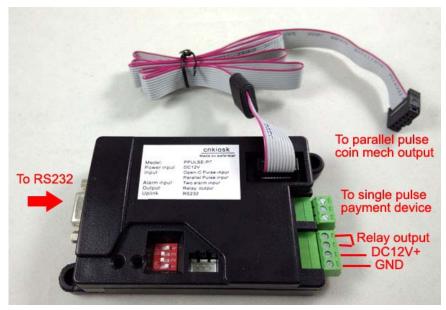
- Bit 3-5 Credit Channel Field
- 000 = None
- $001 = 1_{st}$ credit channel type
- 010 = 2nd credit channel type
- 011 = 3rd credit channel type
- 100 = 4th credit channel type
- 101 = 5th credit channel type
- 110 = Single Pulse channel (Coin acceptor credit report, WF-700B in)
- 111 = 6th credit channel type
- Bit 6 Failure (= 1 if acceptor has alarm input1 Report, for example, failed or cashbox full)
- Bit 7 Reserved (set to 0)

For example, pc will receive the following data:

02 0B 20 01 10 01 00 00 01 03 3A 02 0B 20 01 10 00 00 00 01 03 3B 02 0B 20 10 10 30 00 00 01 03 1A 02 0B 20 10 10 28 00 00 01 03 02 02 0B 20 10 10 04 00 00 01 03 2E 02 0B 20 10 10 40 00 00 01 03 6A The first power up, No data report No data report Coin acceptor payment report Bill acceptor payment report Alarm input2 report Alarm input1 report

BYTE 3, BYTE 4

Credit Left in the stack, that need to be reported


(If the adapter only received one pulse, then this would be 00h, because after the current report data, there is no credit left to report)

02 0B 20 10 10 **30** 00 00 01 03 1A

Coin acceptor payment report

BYTE 5 Set to 01H

7.0 ELECTRICAL HOOKUP FOR PPULSE-PC

Note: To Parallel pulse acceptor interface can be customized change to other multi-pulse payment

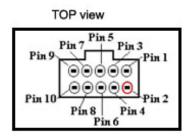
device

7.1 Default DIP SWITCH Settings

On board, There is one DIP switch which are set on the top of the PPULSE-PC.DIP switch is used for Power-on Relay ouput status, inhibit level setting and the inhibit timer setting.

	Lockout timer DIP switch Configu			
	4	3		
	OFF	OFF		
12	OFF	ON		
	ON	OFF		
DIP Switch Selection:	ON	ON	,	
1- OUT ON/OFF Selection	Inhibit Level Co	nfiguration		
2- NV	When DIP Switch 2 is ON, then Inhibit L			
3 LockOut Timer ₄ Setup	When DIP Switch	2 is OFF, then Inhibi	tl	

ration


4	3	Lockout Time
OFF	OFF	No Lockout
OFF	ON	1 second
ON	OFF	10 second
ON	ON	20 second

Level Output is LOW Level Output is HIGH

For example: Setting the DIP switch as the right picture: Lockout Time is: One second Relay output is shorted when power on For initial setup: 2,3 At ON position and 1,4 at OFF position

7.2 Interface for Parallel Pulse bill acceptor socket

10 Pin standard connector

Pin No.	Meaning	Pin No.	Meaning
1	Gnd	6	Inhibit
2	+12 Vdc	7	CH 1
3	CH 5	8	CH 2
4	CH 6	9	CH 3
5	N.U.	10	CH 4

If user want to connect other Pulse or Multi-pulse interface coin acceptor or bill acceptor to this socket, then just check the following in your payment device socket:

Then split the wires to connect to your payment device. If not sure how to connect, just contact : WAFER Service person for suggestions.

7.3 WAFER Demo and test software

(This demo test software can be downloaded from wafer company website for fast development support. If you want to get the source code of this test software, please contact Wafer for order the SDK kits)

Serial Communication Window	Channel Data			
end:02 08 10 02 10 00 03 77	Channel		2	
eceive:02 08 20 01 10 00 00 00 01 03 38		1		-
end:02 08 10 02 10 00 03 77	1	1	0	_
leceive:02 OB 20 01 10 00 00 00 01 03 3B	2	1	0	
end:02 08 10 02 10 00 03 77	3	1	0	
leceive:02 OB 20 01 10 00 00 00 01 03 3B	4	1	0	
end:02 08 10 02 10 00 03 77	5	1	0	
leceive:02 OB 20 01 10 00 00 00 01 03 3B	6	1	0	
end:02 08 10 02 10 00 03 77	7	1	0	-
leceive:02 OB 20 01 10 00 00 00 01 03 3B	•	III		F.
end:02 08 10 02 10 00 03 77		45		_
eceive:02 0B 20 01 10 00 00 00 01 03 3B	Total Income:	65	0	
	Trocar mesme:			
end:02 08 10 02 10 00 03 77	1			
end:02 08 10 02 10 00 03 77 eccive:02 0B 20 10 10 30 00 00 01 03 1A	Alarm	_	V Enable log	file
end:02 08 10 02 10 00 03 77 eccive:02 0B 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77	1		<u></u>	file
end:02 08 10 02 10 00 03 77 ecceive:02 0B 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 eccive:02 0B 20 01 10 00 00 00 01 03 3B	1	2	<u></u>	file
end:02 08 10 02 10 00 03 77 eccive:02 0B 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 eccive:02 0B 20 01 10 00 00 00 01 03 3B end:02 08 10 02 10 00 03 77	Alarm	2	<u></u>	file
end:02 08 10 02 10 00 03 77 ecceive:02 08 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38 end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38	Alarm	2	👿 Enable log	file
end:02 08 10 02 10 00 03 77 eccive:02 0B 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 eccive:02 0B 20 01 10 00 00 00 01 03 3B end:02 08 10 02 10 00 03 77	Alarm		👿 Enable log	file
end:02 08 10 02 10 00 03 77 ecceive:02 08 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38 end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38	Alarm		👿 Enable log	
end:02 08 10 02 10 00 03 77 leceive:02 0B 20 10 10 30 00 00 01 03 1A lend:02 08 10 02 10 00 03 77 leceive:02 0B 20 01 10 00 00 00 01 03 3B end:02 08 10 02 10 00 03 77 leceive:02 0B 20 01 10 00 00 00 01 03 3B Clear Serial ?ort Setting	Al arm 1 COMMAND POLL	02 08 10 02 10 00	✓ Enable log 0 03 77	
end:02 08 10 02 10 00 03 77 ecceive:02 08 20 10 10 30 00 00 01 03 1A end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38 end:02 08 10 02 10 00 03 77 ecceive:02 08 20 01 10 00 00 00 01 03 38 Clear Serial ?ort Setting	Al arm 1 COMMAND POLL	02 08 10 02 10 00	✓ Enable log 0 03 77	

(Demo or SDK of this test software is only for sample, not for user's projects)

7.4 Important for software development

 \diamond About the data received

When pc received the data bytes, sometimes will some interference bytes in front of the correct data, for example you should receive the " 02 0B 20 10 10 00 00 01 01 03 3A ", but in fact you maybe receive the following bytes in your comport:

FF 02 0B 20 10 10 00 00 01 01 03 3A FE 02 0B 20 10 10 00 00 01 01 03 3A FF FE 02 0B 20 10 10 00 00 01 01 03 3A

So must received the 02h and also followed with 0Bh, then will be determined as the correct data byte.

- ♦ Why I cann't input the coins after powered on the PPULSE-PC adapter box?
 - (1) Check the power supply is DC12V and properly connected to the PPULSE-PC box
 - (2) Even after powered on, if no PC polling data received, PPULSE-PC box will inhibit both acceptors
 - (3) Don't put the coin acceptor on the desk, because for all the coin acceptors if the previous coin is blocked in the exit, then the acceptor will be inhibited and cann't insert more coins.so you must keep the exit smooth when you start to insert the coin.

7.5 Still have questions on "How to use the coin acceptor or bill acceptor "?

- Please read WAFER Technical Q&A web page: <u>http://www.waferlife.com/en/technical-bulletin.html</u>
- My payment devices are not parallel interface output, how can I connect to Computer ? WAFER has another adapter box,which can be used to connect the parallel pulse input to computer, For example, NRI,Comestero type Please go to order from: http://cnkiosk.aliexpress.com
- My payment device is MDB interface, how can I connect to Computer?
 Please use WAFER MDB-RS232, which is used to connect MDB payment device to PC, Please go to order from: <u>http://cnkiosk.aliexpress.com</u>
- ↔ How can I connect my serial interface or PC payment device to vending machine ? Please use WAFER RS232-MDB to do that for you, Please go to order from: <u>http://cnkiosk.aliexpress.com</u>
- 7.7 How to get a fast technical service ?
- Download the lastest files from: <u>http://www.waferlife.com/en/PULSE-PC.html</u>
- ♦ Please add online service skype: wafer-service
- Email us: wafer@waferstar.com
- ♦ Leave a message from online store : <u>http://cnkiosk.aliexpress.com</u>